Triphala benefits

Ayurvedic physicians use Triphala for many ailments but most importantly to treat various gastrointestinal disorders, as digestive, mild laxative at normal doses, bowel tonic at low dose, purgative at high doses, carminative, expectorant, antispasmodic, and bronchodilator . Triphala is widely used to treat constipation, as an intestinal cleanser, as a gastrointestinal tract tonifier, to fasten peristalsis and to support both digestion and absorption of food. Triphala is also useful in maintaining serum cholesterol levels, to improve circulation, relax the bile duct and as a hepatoprotective agent . Daily use of Triphala may also promote proper digestion and absorption of food, reduce serum cholesterol levels, improve circulation, relax bile ducts, prevent immunosenescence, maintain homeostasis of the endocrine system, and increase production of red blood cells and hemoglobin .

The major active constituents of triphala are the tannins, gallic acid, ellagic acid, and chebulinic acid, which are potent antioxidants that may account, at least in part, for the observed immunomodulatory activity of the formula . Triphala also contains other bioactive compounds such as flavonoids (e.g., quercetin and luteolin), saponins, anthraquinones, amino acids, fatty acids, and various carbohydrates . In addition, Triphala-derived polyphenols such as chebulinic acid are also transformed by the human gut microbiota into bioactive metabolites, which have demonstrated potential in vitro to prevent oxidative damage .

Variable efficacy of herbal therapies

A number of factors, including variability in herbal source, processing, bioavailability, digestion, and absorption of herbal components, cause the true efficacy of herbs on human health to be highly variable. This variability is known to be at least partially due to inherent variation in the gut microbiota that act on the ingested components of herbal remedies and transform them into compounds with increased bioabsorption and bioactivity. These features have confounded the true efficacy of herbal remedies as it pertains to the maintenance of human health and/or the ability to reverse chronic disease states.

The increased popularity of herbal remedies such as Triphala has led to dramatic improvements in the processing of crude plant materials that serve to maximize the absorption of otherwise poorly absorbed plant components. Despite these improvements, these preparations still display pronounced variability in efficacy, which is likely related to the natural variation in composition of gut microbiota species that catalyze the biotransformation of herbal components. This response variability is not unique to herbs and, in fact, may be the case for virtually all health-promoting compounds ingested by humans (e.g., polyphenolic compounds derived from plants).


Triphala in gastrointestinal health

Triphala is perhaps most well known for its use in general gastrointestinal health. Animal studies have shown that both aqueous and alcohol-based extracts of Triphala prevent diarrhea . Triphala also induces enteroprotective effects, which are likely due, at least in part, to the high antioxidant content. In a rodent model, Triphala replenished depleted protein in the intestinal villi of the brush border as well as glutathione and phospholipid levels; the formula simultaneously decreased myeloperoxidase and xanthine oxidase levels in intestinal epithelium . In rats, Triphala exerted a gastroprotective effect on stress-induced ulcer . One human clinical trial that investigated the use of Triphala in patients with gastrointestinal disorders reported that treatment reduced constipation, mucous, abdominal pain, hyperacidity, and flatulence while improving the frequency, yield, and consistency of stool . Triphala also reduced colitis in a mouse model, and the treatment effect was attributed to antioxidant effects and high levels of flavonoids contained in Triphala .

Triphala in diabetes and for weight loss

Deregulation of eating behavior is common in industrialized countries. Studies have demonstrated the potential of Triphala as a therapeutic agent for weight loss and reduction of body fat. In an animal study, Triphala was administered for 10 weeks to diet-induced obese mice . Triphala treatment decreased the percentage of body fat, body weight, and energy intake. Triphala also decreased total cholesterol, triglycerides, and low-density lipoprotein cholesterol in the experimental group compared with the control group. In a 12-week, double-blind, randomized placebo-controlled trial, human subjects treated with Triphala lost ∼5 kg compared with the placebo control group . Mean fasting blood sugar and fasting serum insulin levels were also reduced in the treated compared with control subjects. Given the global obesity epidemic, more treatment options are necessary to reduce the associated healthcare burden.

Triphala exerts hypoglycemic effects. Patients with type 2 diabetes are likely to have high postprandial blood glucose levels, especially after consuming carbohydrates. Elevated blood glucose results from the breakdown of carbohydrates by the digestive enzymes, alpha-amylase and alpha-glucosidase, and the reduced ability of cells to take in glucose from the blood. Past studies report that Triphala may exert actions similar to diabetic pharmaceutical drugs by inhibiting digestive enzymes and may decrease absorption of glucose through inhibition of glycolytic enzymes, thereby reducing blood glucose levels. One study demonstrated the inhibitory potential of Triphala on pancreatic glycolytic enzymes, namely alpha-amylase and alpha-glucosidase, which break down larger polysaccharides into glucose molecules that enter the blood stream .

The role that Triphala plays in inhibiting starch digestion and absorption, thereby decreasing postprandial hyperglycemia, is similar to that of diabetes pharmaceutical drugs, such as miglitol and acarbose, which also target these glycolytic enzymes. In addition, Triphala decreased serum glucose levels in normal and alloxan-induced diabetic rats . A clinical study of noninsulin-dependent diabetes mellitus patients revealed that supplementation with 5 g of Triphala powder for 45 days significantly lowered blood glucose levels . Both fasting and postprandial blood glucose were reduced, which may be due to active ingredients such as sorbitol. Constituents in Triphala, including ellagitannins and gallotannins, also enhance both PPAR-alpha and -gamma signaling, which increase insulin responsiveness and glucose uptake without inducing adipogenesis . These polyphenols may also promote decreased blood glucose and insulin levels in diabetic patients.

Triphala may also protect diabetics and those predisposed to diabetes through inhibition of glycation enzymes. Elevated blood glucose can cause severe damage through the process of glycation, in which sugar molecules compromise protein molecules in the body, which may in turn lead to nerve damage or blindness. Due to the presence of tannins, Triphala extract was found to effectively inhibit protein glycation in vitro . Triphala may also prevent glycation through promotion of lower blood glucose levels. As diabetes is the most prevalent endocrine disease globally, increased access to complementary hypoglycemic therapies for integrative care is needed.


Stress-reducing potential of Triphala

Stress-induced disorders such as anxiety represent the leading causes of adult disability worldwide . Stress is a state of disharmony caused by perceived threat that is counteracted by an adaptive response to reestablish homeostasis and is associated with many chronic diseases. Animal studies have shown that Triphala protected against cold-induced stress and reversed stress-induced behavioral alterations and biochemical changes such as increased lipid peroxidation and corticosterone levels . Triphala also prevented noise-induced stress . In rats, Triphala prevented the noise-induced metabolic changes by mediating the antioxidant and cell-mediated immune response, and it was hypothesized that the biological mechanism is related to its antioxidant properties . Modern humans experience high levels of stress, thus adaptogenic treatments are needed more extensively in clinical practice.

Triphala and cardiovascular health

Cardiovascular disease is a leading cause of mortality and morbidity worldwide, and hypercholesteremia is an important risk factor. Animal studies have reported the hypercholesteremic effects of Triphala. In one study, Triphala reduced the total cholesterol, low-density lipoprotein, very low-density lipoprotein, and free fatty acid levels in rats fed an atherogenic diet for 48 days . Another study in rats fed an atherogenic diet revealed that Haritaki, one of the herbs in Triphala, induced hypolipidemic effects in the herb-treated group. A reduction in total cholesterol, triglycerides, and total protein and elevation of high-density lipoprotein cholesterol were found in the herb-treated group compared with control group . Triphala is a powerful herb to address imbalances in the gastrointestinal tract and cardiovascular system and should be more widely studied in the context of these common diseases.

Antimicrobial potential of Triphala

Over administration of antibiotics has led to widespread drug resistance, thus it is becoming imperative that clinical researchers discover alternative and adjunctive antimicrobial agents with high efficacy. Both Triphala water decoctions (12%) and ethanol extracts (14%) have demonstrated antibacterial activity in vitro against bacterial isolates derived from patients infected with human immunodeficiency virus ; the ethanol extracts were reported to have greater in vitro antimicrobial action against these species compared with the aqueous extracts, which may indicate lower solubility of the aromatic antibiotic compounds.

In addition, other studies report that these extracts also exert broad-spectrum antimicrobial action against antibiotic-resistant bacteria isolated from human subjects. The aqueous extracts (1:6) have demonstrated greater efficacy compared with the ethanol extracts (1:6) on pathogenic bacteria such as Escherichia coli and Staphylococcus aureus . In vitro, ethanol extracts of Triphala (100 mg/mL) components exhibited specific antimicrobial activity against multidrug-resistant clinical bacterial isolates . Thus, Triphala was reported to exert antibacterial effects on both gram-positive and gram-negative species in vitro and demonstrated potential for further investigation as a complementary or adjunct antimicrobial therapy.


The Potential of Triphala in Oral Care

Triphala has been used traditionally in Ayurvedic medicine as an antimicrobial agent . Numerous controlled clinical trials have shown that Triphala significantly reduces the abundance of oral bacteria, dental plaque, and gingivitis in human subjects . For example, Triphala is effective against Enterococcus faecalis, one of the most difficult to eliminate oral pathogens that are commonly isolated in chronic periodontitis. One study revealed that Triphala (5 mg/mL) in 10% dimethyl sulfoxide (DMSO) was equally or more effective at eliminating E. faecalis in vitro compared with NaOCl, a common irrigant used during root canals . Triphala was more effective than 0.5% and 1% NaOCl solution, but equally effective as 2.5% and 5% solutions.


Human clinical trials using Triphala water decoction as a mouthwash report that it exerts comparable efficacy compared with chlorhexidine gluconate germicidal mouthwash in the prevention of dental caries.45,46 For example, a study in human subjects revealed that Triphala (6%) mouthwash promoted a significant reduction in oral streptococcus colonies. Oral streptococcus levels were measured after using a 6% Triphala mouthwash or 0.2% chlorhexidine mouthwash twice per day for 48 h and for 7 days; Streptococcus levels were reduced by 17% and 44%, respectively, in the Triphala-treated group . The researchers concluded that Triphala was as effective as 0.2% chlorhexidine mouthwash given that the results of the Triphala treatment were similar to the chlorhexidine-treated group. Another double-blind human clinical trial also reported significant reductions in oral streptococcus levels at 5 and 60 min after rinsing with 15 mL aqueous Triphala extract (10%) mouthwash .

Radioprotective effects of Triphala

Studies have concluded that Triphala may help prevent and reverse DNA damage and mutagenesis . The prevention of DNA damage is important given that it is often an initiating event in carcinogenesis. Research in animal models and in vitro has shown that Triphala is effective in prevention of mutagenesis induced by both chemical- and radiation-induced damage . An in vitro study found that Triphala eliminated reactive oxygen species in HeLa cells exposed to ionizing X-radiation or bleomycin, both of which generate DNA strand breaks through the generation of reactive oxygen species . In addition, gamma-radiation-induced plasmid DNA strand break was inhibited by Triphala in vitro. The rasayana formulation also inhibited radiation-induced lipid peroxidation in rat liver microsomes and demonstrated the ability to scavenge free radicals such as superoxide. Importantly, the high levels of phenolic compounds such as gallic acid were attributed to the free radical scavenging activity.


Anti-tumor activity of Triphala

Triphala has been investigated as a potential antineoplastic agent.61 Numerous studies have been performed in this context and have shown that Triphala exerts an antineoplastic effect on many cancer cell lines, including those of the breast, prostate, colon, and pancreas . Data in cell lines show that Triphala has a differential modulatory effect on normal and cancer cell lines. Triphala induces cytotoxicity in cancer cells, which showed increases in intracellular reactive oxygen species, but not normal cells. Excised tumor tissue from Triphala-fed mice compared with controls suggested that apoptosis induction may have mediated reduced tumor growth .


Antioxidant activity of Triphala and eye health

Antioxidant effects of Triphala have the potential to help maintain eye health. Triphala is a rich source of vitamin C and flavonoids. One study used Triphala as a pretreatment in selenite-induced cataracts in mice. Triphala significantly restored glutathione levels in eye lenses. Triphala also increased the activities of antioxidant enzymes, such as superoxide dismutase, catalase, glutathione-S-transferase, and glutathione peroxidase, in the lenses of the experimental group when compared with the control group. While 100% of the mice in the control group developed cataracts, only 20% of the mice pretreated with Triphala developed cataracts. This effect may be linked to the antioxidant activity of Triphala .

Anti-inflammatory effects of Triphala

Chronic inflammation is deleterious and affects most major chronic health conditions. Triphala has shown promise as an anti-inflammatory agent. In one study, Triphala performed better or equivalent when compared with standard drug treatment for a variety of biochemical measurements of inflammation.19 In addition, Triphala significantly reduced inflammatory markers as well as bone and cartilage degradation in arthritic rats . In this study, Triphala extract was significantly more effective than the nonsteroidal anti-inflammatory drug, indomethacin, in ameliorating arthritic and inflammatory effects. Triphala reduced expression of inflammatory mediators such as IL-17, COX-2, and RANKL through inhibition of NF-κB activation. Another study found that Triphala increased antioxidant levels and decreased lipid peroxidation in the tissues of arthritic rats .


Antiaging effects of Triphala

Triphala extract exerted highly protective antiaging effects on human skin cells in vitro. Triphala extract affects gene expression of human skin cells, stimulating collagen-1 and elastin-synthesizing genes and antioxidant genes responsible for the cellular antioxidant, SOD-2. Triphala extract was found to inhibit melanin production and hyperpigmentation due to the presence of protective phytochemicals. Furthermore, Triphala extract exhibited significant free radical scavenging activity on hydrogen peroxide-induced cell damage and senescence . These results demonstrate potential dermal antiaging effects of Triphala, such as increasing collagen and elastin, increasing cellular antioxidants, and decreasing hyperpigmentation.

Triphala and the gut microbiome

It is known that phytochemicals in Triphala such as quercetin and gallic acid promote the growth of Bifidobacteria and Lactobacillus species while inhibiting the growth of undesirable gut residents such as E. coli . In addition, the lactic acid bacteria possess enzymatic activity (e.g., tannase) to degrade plant tannins such as gallic acid contained in Triphala . For example, Triphala-derived polyphenols such as chebulinic acid are transformed by the human gut microbiota into metabolites such as urolithins, which have the potential to prevent oxidative damage . The authors speculate that the bioactivity of Triphala is elicited by the gut microbiome to generate a widened spectrum and abundance of anti-inflammatory compounds.

Triphala-induced benefits in both the elderly and persons of all ages may be enhanced by coadministration of specific probiotic species. Thus, probiotic formulations consisting of bacterial species capable of mediating the increased digestion, bioabsorption, and bioactivity of Triphala may increase and make more uniform the response and impact of Triphala treatment on human populations. Further studies are required to determine the full effect of Triphala on gut microbiota and the potential of specific probiotics to increase the efficacy of the herb.


Leave a Reply

Your email address will not be published. Required fields are marked *

error: Content is protected !!